A new decomposition algorithm for multistage stochastic programs with endogenous uncertainties
نویسندگان
چکیده
In this paper, we present a new decomposition algorithm for solving large-scale multistage stochastic programs (MSSP) with endogenous uncertainties. Instead of dualizing all the initial non-anticipativity constraints (NACs) and removing all the conditional non-anticipativity constraints to decompose the problem into scenario subproblems, the basic idea relies on keeping a subset of NACs as explicit constraints in the scenario group subproblems while dualizing or relaxing the rest of the NACs. It is proved that the algorithm provides a dual bound that is at least as tight as the standard approach. Numerical results for process network examples and oilfield development planning problem are presented to illustrate that the proposed decomposition approach yields significant improvement in the dual bound at the root node and reduction in the total computational expense for closing the gap.
منابع مشابه
Nested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables
Multistage stochastic integer programming (MSIP) combines the difficulty of uncertainty, dynamics, and non-convexity, and constitutes a class of extremely challenging problems. A common formulation for these problems is a dynamic programming formulation involving nested cost-to-go functions. In the linear setting, the cost-to-go functions are convex polyhedral, and decomposition algorithms, suc...
متن کاملSolution strategies for multistage stochastic programming with endogenous uncertainties
In this paper, we present a generic Multistage Stochastic Programming (MSSP) model considering endogenous uncertainty in some of the parameters. To address the issue that the number of non-anticipativity (NA) constraints increases exponentially with the number of uncertain parameters and/or its realizations, we present a new theoretical property that significantly reduces the problem size and c...
متن کاملOn regularization with normal solutions in decomposition methods for multistage stochastic programming
We consider well-known decomposition techniques for multistage stochastic programming and a new scheme based on normal solutions for stabilizing calculations as the iteration process progresses. The given algorithms combine ideas from finite perturbation of convex programs and level bundle methods to regularize the so-called forward step of these decomposition methods. In contrast to other regu...
متن کاملModels and computational strategies for multistage stochastic programming under endogenous and exogenous uncertainties
In this work, we address the modeling and solution of mixed-integer linear multistage stochastic programming problems involving both endogenous and exogenous uncertain parameters. We first propose a composite scenario tree that captures both types of uncertainty, and we exploit its unique structure to derive new theoretical properties that can drastically reduce the number of non-anticipativity...
متن کاملCut sharing for multistage stochastic linear programs with interstage dependency
Multistage stochastic programs with interstage independent random parameters have recourse functions that do not depend on the state of the system. Decomposition-based algorithms can exploit this structure by sharing cuts (outer-linearizations of time recourse function) among different scenario subproblems at the same stage. The ability to share cuts is necessary in practical implementations of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Chemical Engineering
دوره 62 شماره
صفحات -
تاریخ انتشار 2014